5 resultados para h]anthracene diol epoxide

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis tackles some important points concerning the collective properties of two typical categories of molecular crystals, i.e., anthracene derivatives and charge transfer crystals. Anthracene derivatives have constituted the class of materials from which systematical investigations of crystal-to-crystal photodimerization reactions started, developed and have been the subject of a new awakening in the recent years. In this work some of these compounds, namely, 9-cyanoanthacene, 9-anthacenecarboxylic acid and 9-methylanthracene, have been selected as model systems for a phenomenological approach to some key properties of the solid state, investigated by spectroscopic methods. The present results show that, on the basis of the solid state organization and the chemical nature of each compound, photo-reaction dynamics and kinetics display distinctive behaviors, which allows for a classification of the various processes in topochemical, non topochemical, reversible or topophysical. The second part of the thesis was focused on charge transfer crystals, binary systems formed by stoichiometric combinations of the charge donating perylene (D) and the charge accepting tetracyano-quinodimethane (A), this latter also in its fluorinated derivatives. The work was focused on the growth of single crystals, some of which not yet reported in the literature, by PVT technique. Structural and spectroscopic characterizations have been performed, with the aim of determining the degree of charge transfer between donor and acceptor in the co-crystals. An interesting outcome of the systematic search performed in this work is the definition of the experimental conditions which drive the crystal growth of the binary systems either towards the low (1:1) or the high ratio (3:1 or 3:2) stoichiometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Medicina Veterinaria l'avvelenamento da rodenticidi anticoagulanti è conosciuto e studiato ormai da anni, essendo una delle intossicazioni più comunemente riscontrate nelle specie non target. In letteratura si rinvengono numerose pubblicazioni ma alcuni aspetti sono rimasti ancora inesplorati.Questo studio si propone di valutare il processo infiammatorio, mediante le proteine di fase acuta (APPs), in corso di fenomeni emorragici, prendendo come modello reale un gruppo di soggetti accidentalmente avvelenati da rodenticidi anticoagulanti. I 102 soggetti avvelenati presentano un valore più elevato di proteina C reattiva (CRP)con una mediana di 4.77 mg/dl statisticamente significativo rispetto alla mediana delle due popolazioni di controllo di pari entità numerica create con cross match di sesso, razza ed età; rispettivamente 0.02 mg/dl dei soggetti sani e 0.37 mg/dl dei soggetti malati di altre patologie. Inoltre all'interno del gruppo dei soggetti avvelenati un valore di CRP elevato all'ammissione può predisporre al decesso. La proteina C reattiva assume quindi un ruolo diagnostico e prognostico in questo avvelenamento. Un'altra finalità, di non inferiore importanza, è quella di definire una linea guida terapeutica con l'ausilio di biomarker coagulativi e di valutare la sicurezza della vitamina K per via endovenosa: in 73 cani, non in terapia con vitamina k, intossicati da rodenticidi anticoagulanti, i tempi della coagulazione (PT ed aPTT) ritornano nel range di normalità dopo 4 ore dalla prima somministrazione di 5 mg/kg di vitamina k per via endovenosa e nessun soggetto durante e dopo il trattamento ha manifestato reazioni anafilattiche, nessuno dei pazienti ha necessitato trasfusione ematica e tutti sono sopravvissuti. Infine si è valutata l'epidemiologia dell'ingestione dei prodotti rodenticidi nella specie oggetto di studio e la determinazione dei principi attivi mediante cromatografia liquida abbinata a spettrofotometria di massa (UPLC-MS/MS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With this work I elucidated new and unexpected mechanisms of two strong and highly specific transcription inhibitors: Triptolide and Campthotecin. Triptolide (TPL) is a diterpene epoxide derived from the Chinese plant Trypterigium Wilfoordii Hook F. TPL inhibits the ATPase activity of XPB, a subunit of the general transcription factor TFIIH. In this thesis I found that degradation of Rbp1 (the largest subunit of RNA Polymerase II) caused by TPL treatments, is preceded by an hyperphosphorylation event at serine 5 of the carboxy-terminal domain (CTD) of Rbp1. This event is concomitant with a block of RNA Polymerase II at promoters of active genes. The enzyme responsible for Ser5 hyperphosphorylation event is CDK7. Notably, CDK7 downregulation rescued both Ser5 hyperphosphorylation and Rbp1 degradation triggered by TPL. Camptothecin (CPT), derived from the plant Camptotheca acuminata, specifically inhibits topoisomerase 1 (Top1). We first found that CPT induced antisense transcription at divergent CpG islands promoter. Interestingly, by immunofluorescence experiments, CPT was found to induce a burst of R loop structures (DNA/RNA hybrids) at nucleoli and mitochondria. We then decided to investigate the role of Top1 in R loop homeostasis through a short interfering RNA approach (RNAi). Using DNA/RNA immunoprecipitation techniques coupled to NGS I found that Top1 depletion induces an increase of R loops at a genome-wide level. We found that such increase occurs on the entire gene body. At a subset of loci R loops resulted particularly stressed after Top1 depletion: some of these genes showed the formation of new R loops structures, whereas other loci showed a reduction of R loops. Interestingly we found that new peaks usually appear at tandem or divergent genes in the entire gene body, while losses of R loop peaks seems to be a feature specific of 3’ end regions of convergent genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.